Introduction: Andrea Voigt, EPEE Director General
The EU’s 2050 pathway to decarbonisation

Almut Bonhage

Patrick Clerens

Francesco Ferioli

The Coalition for ENERGY SAVINGS

EASE

European Association for Storage of Energy

European Commission
Energy Savings Scenarios 2050
and
2050 Energy Efficiency Vision
Almut Bonhage

EPEE Annual General Meeting
21 March 2019
Who we are

» 29 industry, NGO, professional, cooperatives and local authorities associations
 » more than 500 associations, 200 companies, 1,500 cooperatives
 » 15 million supporters and 1 million citizens as members of cooperatives
 » 2,500 cities and towns in 30 countries in Europe
The Coalition for Energy Savings

- **Creation**
- **2010**
- **2013**
- **2015 - 2018**
- **2019**
- **2020**
- **2021**

- **2030 Leadership**
- **Implementation and agenda setting**
- **Lobbying**
- **Partnering**

- **Leading to new policy frontiers**

- 19 members ➔ > 30 members ➔ 10 years anniversary

- EED
- 40% target
- Art. 7
- EE1st
- 2050
- NECP
- new policy areas
Key results

Savings on EU final energy demand in 2050 compared to baseline

- **Removing Market Barriers**: 51%
- **New Trends Inefficient**: 32%
- **New Trends Efficient**: 67%

The *Baseline* projects that Final Energy Demand (FED) in 2050 is 1,086 Mtoe (including UK). The additional techno-economic savings that result from running the *Removing Market Barriers* Scenario is 51%, bringing the FED to 533 Mtoe. The *New Trends Inefficient* Scenario estimates the savings potential is lowered to 32%, resulting in 737 Mtoe FED in 2050. In the *New Trends Efficient* Scenario, the savings increases reaching 67%, corresponding to a FED of 361 Mtoe in 2050.

Fraunhofer ISI study on 2050 Energy Savings Scenarios: www.energycoalition.eu/publications-0
<table>
<thead>
<tr>
<th>Cluster</th>
<th>Trends</th>
<th>Estimated lost/additional energy savings 2050 compared to the Removing Market Barriers scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitalisation of Life</td>
<td>Shift towards smart products and services/ automatisation</td>
<td>- 11%</td>
</tr>
<tr>
<td>New Social and Economic Models</td>
<td>Sharing economy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prosumer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Awareness of personal footprint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social Disparities / Energy Poverty</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New forms of funding - Public spending towards greener and more efficient options</td>
<td></td>
</tr>
<tr>
<td>Industrial Transformation</td>
<td>Reindustrialisation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circular economy and resource efficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low-carbon industry / Decarbonisation</td>
<td></td>
</tr>
<tr>
<td>Quality of Life</td>
<td>Increasing importance of health (e.g. air quality, noise, heat)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regionalisation - governance solving global challenges locally</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urbanisation - Global trend towards living in cities</td>
<td></td>
</tr>
</tbody>
</table>
Household and Tertiary Sector

For the household and tertiary sectors the following main impacts of the New Societal Trends on energy consumption and scenario parameters are relevant:

In the New Trends Inefficient Scenario (increasing impacts on energy consumption):

- Building automation and interconnection of appliances increases the energy demand of the buildings
- Despite a widespread awareness consumers have increasing energy demands (e.g. due to changes in comfort levels)

In the New Trends Efficient Scenario (decreasing impacts on energy consumption):

- Building automation raises consumer awareness
- Decentral generation of electricity raises the awareness of the value of energy
- Urbanization contributes to reducing living areas and adapting them to the living context.
- Consciousness about the personal (carbon) footprint impacts consumer choices on buildings and appliances.

Behavioural choices such as the adaptation of space to the living context, consciousness about the personal footprints and decentral generation of electricity, supported by policy settings, contribute to New Trends Efficient Scenario.
Table 6: Major parameter settings derived from studies and estimates for the main trend clusters and main wedges in the household and tertiary sectors

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Heating and Cooling</th>
<th>Appliances and Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Trends Efficient Scenario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digitalisation of Life</td>
<td>0.95</td>
<td>0.79</td>
</tr>
<tr>
<td>New Social and Economic Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer / Citizens</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Sustainable Finance</td>
<td>0.95</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Transformation</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Quality of Life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health & Comfort</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Regionalization / Urbanization</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>Total Scenario Changes</td>
<td>0.65</td>
<td>0.71</td>
</tr>
<tr>
<td>New Trends Inefficient Scenario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digitalisation of Life</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>New Social and Economic Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer / Citizens</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Sustainable Finance</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Industrial Transformation</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Quality of Life</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health & Comfort</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Regionalization / Urbanization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Scenario Changes</td>
<td>1.33</td>
<td>1.82</td>
</tr>
</tbody>
</table>

- Own estimate based on projections by IEA 2017 - Digitalization & Energy
- Own estimate based on UKERC - Energy 2050 - Energy Demand Lifestyle and Energy Consumption
- Gains through increased public spending in renovation
- Increasing demand based on longer heating and cooling hours due to remote control
- Changes in comfort levels, e.g. room temperatures
Fraunhofer ISI Study
Main impacts on buildings (3)

Figure 2.4 Cumulative energy savings in buildings from widespread digitalization

Key message: The widespread deployment of active controls, assuming limited rebound effects, would save up to 65 PWh cumulatively to 2040, or twice the energy consumed by the entire buildings sector in 2017.

Figure 2.5 Household electricity consumption of appliances and other small plug loads

Key message: The share of connected “network-enabled” appliances in total household electricity consumption is set to grow rapidly, presenting opportunities for smart demand response but also increasing the need for standby power consumption.
2050 Energy Efficiency Vision

Seizing the opportunity of the energy transition

The 2050 Energy Efficiency Vision is a clear statement for an accelerated energy transition where the Energy Efficiency First Principle is applied, full energy savings are delivered and the benefits of energy efficiency are realised.

Europe’s energy transition is at the heart of an economic transformation that has to rebalance diverging societal expectations, provide quality work and thriving industries while respecting planetary boundaries.

From its broad perspective as a diverse, representative and committed group, The Coalition for Energy Savings sees in the pivotal challenges of our time a major opportunity. When driven by the ‘Energy Efficiency First principle’, the energy transition delivers multiple benefits like reduced energy bills, new local jobs, independence from energy imports and a reduction of greenhouse gas emissions. It is a chance to stop wasting energy, to overcome poor building structures and to improve the competitiveness of Europe.

In order to make this happen, the European Union must act as a union that protects citizens, fosters joint actions, enjoys a vibrant, equitable internal market and leads by example. It must work cooperatively through European, national, regional and local policies, all delivering a robust and efficient European energy system and its benefits.
Thank you!
The Coalition for Energy Savings
Rue de Toulouse 49, 1040 Brussels, BELGIUM

secretariat[at]energycoalition.eu

www.energycoalition.eu
@Euenergysavings

AISBL Reg Nr: 644.403.860
Transparency Register: 72911566925-69
The CES 2050 study: Almut Bonhage

Any questions?
EU’s 2050 Decarbonisation Strategy and the Role of Storage

Patrick Clerens
EASE Secretary General
Introduction to EASE

The European Association for Storage of Energy (EASE)

- EASE is the leading member-led association representing the energy storage industry in Brussels

- EASE’s mission is to support the development & deployment of all energy storage technologies by:
 - Raising awareness about the benefits of energy storage and its crucial role in supporting the energy transition
 - Promoting a fair and future-oriented energy market design
 - Serving as a platform for information-sharing and debate on different technologies, applications, and business cases
Introduction to EASE

EASE Members
2050 Long–Term Strategy for EU GHG Emissions Reductions

Background

- In November 2018, the European Commission published its 2050 Long–Term Strategy for EU greenhouse gas (GHG) emissions reductions.

- The Communication, published along with a lengthy analysis, is not a legislative proposal but rather a strategic vision on how the EU can deliver on the Paris Agreement.

- The strategy assesses different pathways for the EU that achieve greenhouse gas emissions reductions between −80% by 2050 (compared to 1990) up to net zero greenhouse emissions by 2050.

- The strategy proposes that power generation be fully decarbonised by 2050, with a share of variable renewables (vRES) in gross electricity generation of 81–85%. This will require a huge amount of storage capacity.
2050 Long-Term Strategy for EU GHG Emissions Reductions

The role of storage in the strategy

- Storage & sectoral integration are stressed as an essential element to enable integration of higher shares of vRES in a faster, more efficient way.

- Storage is predicted to see significant increases in all scenarios:
 - The use of conventional/"direct" storage (e.g. pumped hydro storage (PHS) or stationary batteries), increases in all scenarios, from about 30 TWh today, to 70 TWh in 2030 and 170–270 TWh in 2050 for scenarios achieving 80% GHG reductions. Scenarios achieving higher GHG reductions foresee 160–200 TWh of storage.
 - Total (stationary) storage explicitly used in the power system (i.e. PHS, stationary batteries and chemical storage, incl. indirect storage effects of producing e-fuels for the final consumers) ranges between 250 – 450 TWh by 2050.
2050 Long-Term Strategy for EU GHG Emissions Reductions

The role of storage in the strategy

Figure 26: Electricity storage in 2050

Source: In-Depth Analysis in Support of Commission Communication COM(2018) 773
2050 Long-Term Strategy for EU GHG Emissions Reductions

Ideas to improve the final document
2050 Long-Term Strategy for EU GHG Emissions Reductions

Technology neutrality

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Electrical</th>
<th>Mechanical</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>Supercapacitors</td>
<td>Adiabatic Compressed Air</td>
<td>Latent Heat Storage</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>Drop-in Fuels</td>
<td>Diabatic Compressed Air</td>
<td>Sensible Heat Storage</td>
</tr>
<tr>
<td>Synthetic Fuels</td>
<td>Methanol</td>
<td>Liquid Air Energy Storage</td>
<td>Thermochemical Storage</td>
</tr>
<tr>
<td>Electrochemical</td>
<td>Synthetic Natural Gas</td>
<td>Flywheels</td>
<td></td>
</tr>
<tr>
<td>Classic Batteries</td>
<td>Flow Batteries</td>
<td>Pumped Hydro</td>
<td></td>
</tr>
<tr>
<td>Lead Acid</td>
<td>Vanadium Red-Ox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li-Polymer</td>
<td>Zn-Br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal Air</td>
<td>Li-Ion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na-Ion</td>
<td>Li-S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na-NiCl₂</td>
<td>Na-S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-Cd</td>
<td>Ni-MH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-Ion</td>
<td>Zn-Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid Supercapacitors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Commission’s strategy considers only a limited number of technologies, which the Commission expect will play an important role.

EASE stresses the importance of creating an enabling regulatory and market environment which fosters competition and allows all storage technologies to participate on a level playing field.

=> Include all energy storage technologies in final position
2050 Long-Term Strategy for EU GHG Emissions Reductions

Storage applications

- All storage applications should be considered in the strategy.

<table>
<thead>
<tr>
<th>Generation/Bulk Services</th>
<th>Ancillary Services</th>
<th>Transmission Infrastructure Services</th>
<th>Distribution Infrastructure Services</th>
<th>Customer Energy Management Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitrage</td>
<td>Primary Frequency Control</td>
<td>Transmission Investment Deferral</td>
<td>Capacity Support</td>
<td>End-user Peak Shaving</td>
</tr>
<tr>
<td>Support to Conventional Generation</td>
<td>Tertiary Frequency Control</td>
<td>Transmission support</td>
<td>Distribution Investment Deferral</td>
<td>Particular Requirements in Power Quality</td>
</tr>
<tr>
<td>Ancillary Services RES Support</td>
<td>Load Following</td>
<td></td>
<td></td>
<td>Maximising self-production & self-consumption</td>
</tr>
<tr>
<td>Capacity Firming</td>
<td>Frequency Stability of Weak Grids</td>
<td></td>
<td>Dynamic, Local Voltage Control</td>
<td>Demand Charge Management</td>
</tr>
<tr>
<td>RES Curtailment Minimisation</td>
<td>Black Start</td>
<td></td>
<td>Intentional Islanding</td>
<td>Continuity of Energy Supply</td>
</tr>
<tr>
<td>Limitation of Upstream Perturbations</td>
<td>Voltage support</td>
<td></td>
<td>Limitation of Upstream Disturbances</td>
<td>Limitation of Upstream Disturbances</td>
</tr>
<tr>
<td>Seasonal Arbitrage</td>
<td>New ancillary services</td>
<td></td>
<td>Reactive Power Compensation</td>
<td>Compensation of the Reactive Power</td>
</tr>
<tr>
<td>Cross-Sectoral Storage</td>
<td></td>
<td></td>
<td>EV integration</td>
<td></td>
</tr>
</tbody>
</table>
2050 Long-Term Strategy for EU GHG Emissions Reductions

Behind-the-meter

2050 Long–Term Strategy for EU GHG Emissions Reductions

Behind-the-meter

- Behind-the-meter technologies are expected to have the largest share of the storage market and have a significant flexibility potential.
- However, the Commission’s strategy does not consider behind-the-meter flexibility.

=> Include all applications in final position
2050 Long-Term Strategy for EU GHG Emissions Reductions

Electric Vehicles

ENERGY STORAGE: A KEY ENABLER FOR THE DECARBONISATION OF THE TRANSPORT SECTOR

POSITION PAPER
2050 Long-Term Strategy for EU GHG Emissions Reductions

Electric Vehicles

- EVs can play an important part in delivering greater flexibility to the electricity system through smart charging and repurposing of EV batteries into stationary storage applications (second life).
- However, the flexibility and storage potential of EVs are not considered in the Commission’s strategy.
- EASE has published a paper outlining the links between storage and EVs and their contribution to reducing GHG emissions, available [here](#).

=> Include a consideration of Evs’ flexibility and storage potential in final position
2050 Long-Term Strategy for EU GHG Emissions Reductions

Practical implications and future actions

- The aim of this strategy is to ‘confirm Europe's commitment to lead in global climate action and to present a vision that can lead to achieving net-zero greenhouse gas emissions by 2050 through a socially-fair transition in a cost-efficient manner.’

- Besides supporting the final EU position regarding the Mid-Century decarbonisation, the strategy must identify specific areas for action with the highest impact to achieve the declared goals.

- Concrete policy actions must build on the already identified strategy content. But one needs to add:
 - technology neutrality
 - all storage applications
 - behind-the-meter Energy Storage
 - Flexibility from Evs
Contact Details

EASE – European Association for Storage of Energy
Avenue Adolphe Lacomblé 59/8
BE – 1030 Brussels
Tel: +32 2 743 29 82 | Fax: +32 2 743 29 90
@EASE_ES
info@ease-storage.eu
www.ease-storage.eu
Another sector’s view:
Patrick Clerens

Any questions?
A Clean Planet for all

A European strategic long term vision for a prosperous, modern, competitive and climate neutral economy
Political context

• Parties of the Paris Agreement to present long-term low greenhouse gas emissions development strategies by 2020

• In October 2017 the European Parliament also invited the Commission "to prepare by COP24 a mid-century zero emissions strategy for the EU"

• In March 2018, European Council invited the Commission "to present by the first quarter of 2019 a proposal for a Strategy for long-term EU greenhouse gas emissions reduction".

• Regulation on Governance of the Energy Union calls on the Commission to present an EU long-term strategy by April 2019, including pathways that achieve net zero GHG emissions by 2050 and negative emissions thereafter
All sectors have to contribute

GHG emissions trajectory in a 1.5°C scenario
Detailed assessment supported by scenario analysis

Long Term Strategy Options

<table>
<thead>
<tr>
<th>Main Drivers</th>
<th>Electrification (ELEC)</th>
<th>Hydrogen (H2)</th>
<th>Power-to-X (P2X)</th>
<th>Energy Efficiency (EE)</th>
<th>Circular Economy (CIRC)</th>
<th>Combination (COMBO)</th>
<th>1.5°C Technical (1.5TECH)</th>
<th>1.5°C Sustainable Lifestyles (1.5LIFE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power sector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power is nearly decarbonised by 2050. Strong penetration of RES facilitated by system optimization (demand-side response, storage, interconnections, role of prosumers). Nuclear still plays a role in the power sector and CCS deployment faces limitations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry</td>
<td>Electrification of processes</td>
<td>Use of H2 in targeted applications</td>
<td>Use of e-gas in targeted applications</td>
<td>Reducing energy demand via Energy Efficiency</td>
<td>Higher recycling rates, material substitution, circular measures</td>
<td>Combination of most Cost-efficient options from “well below 2°C” scenarios with targeted application (excluding CIRC)</td>
<td>COMBO but stronger</td>
<td>CIRC+COMBO but stronger</td>
</tr>
<tr>
<td>Buildings</td>
<td>Increased deployment of heat pumps</td>
<td>Deployment of H2 for heating</td>
<td>Deployment of e-gas for heating</td>
<td>Increased renovation rates and depth</td>
<td>Sustainable buildings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport sector</td>
<td>Faster electrification for all transport modes</td>
<td>H2 deployment for HDVs and some for LDVs</td>
<td>E-fuels deployment for all modes</td>
<td>Increased modal shift</td>
<td>Mobility as a service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Drivers</td>
<td>H2 in gas distribution grid</td>
<td>E-gas in gas distribution grid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major Common Assumptions
- Higher energy efficiency post 2030
- Deployment of sustainable, advanced biofuels
- Moderate circular economy measures
- Digitisation
- Market coordination for infrastructure deployment
- BECCS present only post-2050 in 2°C scenarios
- Significant learning by doing for low carbon technologies
- Significant improvements in the efficiency of the transport system.
Deployment of renewables

Primary energy in 2050 largely coming from renewable sources
• The projected renovation rate varies across scenarios

• Typically between 1.7-1.8% in the residential sector in and 1.5-1.6% in services (vs. around 1% today)
• Baseline 2050: 38% lower FEC in residential sector & 8% in services (compared to 2005)

• decarbonisation scenarios 2050: 40-60% reductions in residential and 20-40% reduction in services (despite increase of needs for appliances)

Evolution of the energy consumption in buildings in 2050 (compared to 2005)
• The share of electricity in final energy demand of services’ buildings: from 50% today to ~80% by 2050
• The share of electricity in heating: from 14% in 2030 to 22-44% in residential by 2050

• The trend is stronger in services: electricity share grows from 29% in 2030 to 44%-60% in 2050

Share of electricity in space heating in buildings
Investing in the future of Europe

additional investments in % of GDP

• Additional investment: 150-290 billion EUR/year (2030-2050)
• Higher investments for higher ambition
• Behaviors matters!
Increased Investment in the EU economy

- Modernising and decarbonising the EU's economy will stimulate significant additional investment.
- From 2% of EU GDP invested in the energy system today to 2.8% (up to €575 bn per annum) to achieve a net-zero greenhouse gas emissions economy.
- Positive for growth and jobs, with GDP higher by up to 2% in 2050.
- Co-benefits: energy imports down, public health, etc.
Thank you!
The EU 2050 Decarbonisation Strategy: Francesco Ferioli

Any questions?
A year of institutional change – The EU at a crossroads
COFFEE BREAK
Why the EU elections matter?
Why the EU matters for the HVACR industry

The EU is the biggest internal market in the world, with **500 million citizens** (ca. 430 million after Brexit).

European regulatory & economic integration directly affects **the ability of the sector to operate & grow both** in the EU and international markets.

The European regulatory framework **directly impacts** the HVACR sector in its ability to **innovate and compete**: F-Gas, Ecodesign, EPBD, etc.

Changes to the EU’s strategic direction, purpose or structure would require a **review of the sector business interests & investments in Europe**.
What will change?

The European Parliamentary elections will be held from 23 May until 26 May 2019. They will lead to a major reshuffle in the European Parliament and the European Commission (end of Juncker’s mandate 31 October 2019).

College of Commissioners
- 1 Commissioner per Member States
- The institution with the right to propose new legislation.
- “Guardian of the treaties”

European Parliament
- Total number of MEPs will be reduced from 751 to 705
- The voice of citizens in Europe
- Jointly responsible for decision-making with the Council of the EU (Member States).

The EU at a turning point
A whole set of new players in the European Parliament
New EU priorities for 2019-2024
A year of changes
From September 2018 until October 2019

Ongoing discussions on:
- Future composition of EP
- Spitzenkandidaten

23-26 May – Parliament elections
Q3 – New European Commission taking office
Sept-Oct. Hearings of new Commissioners

Q4 2018 – Q1 2019
Finalisation of Party Manifestos

Electoral campaign

September 2018
October-December 2018
January-March 2019
April-June 2019
July-September 2019
October-December 2019

Austrian Presidency
Romanian Presidency
Finnish Presidency
What projections for 2019?
Projection of the 2019-2024 members and political landscape vs. 2014-2019: A shift towards the right?

N.B: Reduced number of seats after Brexit (705 instead of 751)
The “Spitzenkandidat” system

How to nominate the President of the Commission?

Context:
- It has always been the role of the EU Member States, sitting in Council, to choose who would hold the office of President of the European Commission.
- However, with the ever increasing power of the European Parliament, the directly elected MEPs have held greater sway in confirming nominees to be Commissioners.

2014 outcome:
- In 2014, the leader of the biggest party in the European Parliament was nominated and confirmed as President of the European Commission. The EPP, being the biggest party, put forward Jean-Claude Juncker to be President.

The ‘Spitzenkandidat’ system challenged
- This ‘Spitzenkandidat’ system is being brought into question, with national governments wanting to have a greater role in deciding the next Commission President.
- This is exacerbated by growing concerns that the next European Parliament could be considerably more Eurosceptic than ever before.
- It now remains to be seen whether the next President will be elected according to the Spitzenkandidat system, or by the more ‘traditional’ nomination by the Council.
“Spitzenkandidaten” for the 2019 EU elections

Each party on the European level can publicly announce who their transnational spitzenkandidat will be, informally making them the face of their election bid.

Elected in November 2018

- **EPP:** Manfred Weber
- **S&D:** Frans Timmermans
- **Greens:** Ska Keller & Bas Eickhout

ALDE “Team Europe”

- Guy Verhofstadt
- Margrethe Vestager
- Emma Bonino
- Violeta Bulc
- Luis Garicano
- Nicola Beer
- Katalin Cseh
Scenario 4: the UK running for EU election due to its extension period

Initial proposal

<table>
<thead>
<tr>
<th>Country</th>
<th>Seats 2019</th>
<th>Seats Change</th>
<th>Seats 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>21</td>
<td>+4</td>
<td>25</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>17</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>21</td>
<td>+2</td>
<td>23</td>
</tr>
<tr>
<td>Denmark</td>
<td>11</td>
<td>+3</td>
<td>14</td>
</tr>
<tr>
<td>Germany</td>
<td>96</td>
<td>+1</td>
<td>97</td>
</tr>
<tr>
<td>Estonia</td>
<td>7</td>
<td>+1</td>
<td>8</td>
</tr>
<tr>
<td>Ireland</td>
<td>13</td>
<td>+2</td>
<td>15</td>
</tr>
<tr>
<td>Greece</td>
<td>21</td>
<td>+2</td>
<td>23</td>
</tr>
<tr>
<td>Spain</td>
<td>59</td>
<td>+5</td>
<td>64</td>
</tr>
<tr>
<td>France</td>
<td>79</td>
<td>+5</td>
<td>84</td>
</tr>
<tr>
<td>Croatia</td>
<td>12</td>
<td>+2</td>
<td>14</td>
</tr>
<tr>
<td>Italy</td>
<td>76</td>
<td>+3</td>
<td>79</td>
</tr>
<tr>
<td>Cyprus</td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Latvia</td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Lithuania</td>
<td>11</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Hungary</td>
<td>21</td>
<td>+1</td>
<td>22</td>
</tr>
<tr>
<td>Malta</td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>20</td>
<td>+3</td>
<td>23</td>
</tr>
<tr>
<td>Austria</td>
<td>19</td>
<td>+1</td>
<td>20</td>
</tr>
<tr>
<td>Poland</td>
<td>52</td>
<td>+2</td>
<td>54</td>
</tr>
<tr>
<td>Portugal</td>
<td>21</td>
<td>+3</td>
<td>24</td>
</tr>
<tr>
<td>Romania</td>
<td>33</td>
<td>+3</td>
<td>36</td>
</tr>
<tr>
<td>Slovenia</td>
<td>8</td>
<td>+1</td>
<td>9</td>
</tr>
<tr>
<td>Slovakia</td>
<td>14</td>
<td>+1</td>
<td>15</td>
</tr>
<tr>
<td>Finland</td>
<td>14</td>
<td>+1</td>
<td>15</td>
</tr>
<tr>
<td>Sweden</td>
<td>21</td>
<td>+1</td>
<td>22</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

- **73 MEPs seats to be reallocated**
- **27 seats to be shared among EU countries**
- **46 seats to be kept for future enlargement**

What happens next?

- **If extension goes beyond 1 July:**
 - UK would need to participate in EU elections
 - Allocation of seats would go back to the same numbers as 2014-2019
- **Potential high level of participation of anti-Brexit voters:** potentially stronger Labour & Liberal party MEPs
- **Limited influence of UK MEPs:** MEPs would likely remain in the European Parliament temporarily, so UK MEPs unlikely to hold important positions on EU legislative files or prominent positions
Thank you for your attention!
#EP2019: expectations

Davide Ferrari
Research Executive – VoteWatch Europe
Brussels, 21st March 2019
Agreement rate between EPP and S&D over the past three terms of the European Parliament

Based on actual votes in the European Parliament

- 2014-2019: 76%
- 2009-2014: 74%
- 2004-2009: 70%

To discover how MEPs voted, contact us: secretariat@votewatch.eu
Projected composition of the European Parliament after the elections in 2019 (without the UK)
Biggest national parties within the EP after 2019 elections

Without the UK

<table>
<thead>
<tr>
<th>Party</th>
<th>Seats</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDU/CSU</td>
<td>29</td>
</tr>
<tr>
<td>Lega Salvini</td>
<td>27</td>
</tr>
<tr>
<td>PiS</td>
<td>20</td>
</tr>
<tr>
<td>En Marche !</td>
<td>20</td>
</tr>
<tr>
<td>Rassemblement National</td>
<td>19</td>
</tr>
</tbody>
</table>
How will the fragmentation impact policy-making?
Policy Impact of Seats Redistribution in the EP

Degree of support for environmentally progressive policy in the EP by country

based on the actual votes cast in the EU Parliament

Eurozone and Non-Eurozone EP seats comparison after proposed seats redistribution

Number of seats in the EP

<table>
<thead>
<tr>
<th></th>
<th>Eurozone:</th>
<th>Non-Eurozone:</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>More Support</td>
<td>+22</td>
<td>-68</td>
<td>+151</td>
</tr>
<tr>
<td>Less Support</td>
<td>-21</td>
<td>-57</td>
<td>-78</td>
</tr>
<tr>
<td>Total</td>
<td>492</td>
<td>259</td>
<td>751</td>
</tr>
</tbody>
</table>

705
Policy impact of 2019 EU elections
Balance of Power among MEPs on Environmental Policies

Balance of power on progressive environmental policies to remain relatively stable.
NB: possibly 60% of MEPs will be new!
A year of institutional change – The EU at a crossroads

Any questions?