EPEE POSITION PAPER
EPBD, EED, and RED: Making Energy Efficiency in buildings a reality

Executive Summary

EPBD: Lay the groundwork
Harmonize calculation methods across EU Member States

EPBD: Make the most of products in buildings
Improve the efficiency of Technical Building Systems

EPBD/EED/RED: Promote technological innovation
Support new primary energy factor (PEF)

Amendments and Case Studies in the Annex of this paper

Introduction

EPEE represents the heating, cooling and refrigeration industry in Europe and strongly supports the energy efficiency first principle. Given that heating and cooling have been identified and projected in the long term as the EU’s biggest energy consuming sector, our members’ technologies have the potential to significantly reduce the impact on climate, reduce energy consumption, limit energy demand and increase energy security in Europe, provided that the energy framework sets the right priorities.

In this context, EPEE considers the 30% binding energy efficiency target as proposed by the European Commission in the review of the Energy Efficiency Directive (EED) as a step in the right direction. More specifically, we believe that Technical Building Systems have a key role to play to achieve significant energy savings and call for strengthening the relevant provisions in the Energy Performance of Buildings Directive (EPBD) and in the Renewable Energy Directive (RED).

Finally, we would like to emphasize that European standards are key drivers for technology development and innovation in this sector, and need to be further promoted. The following paper outlines EPEE’s main recommendations related to the review of the Directives mentioned above and the important interaction with standardisation.
1. Lay the groundwork: Apply harmonized energy performance calculation methods in all EU Member States

The industry has made strong efforts to increase the energy efficiency of their products, for example via Ecodesign requirements for heating and cooling equipment. To unleash the full potential of these efforts and, at the same time, to ensure better enforcement of the EPBD, harmonized energy performance calculation methods are a key priority. The groundwork has been laid with the recent finalisation of the EPBD CEN standards which now need to be applied across all EU Member States.

In particular in the present economic climate, where resources are limited and need to be optimised, such a unified approach is indispensable to accelerate innovation and energy savings across Europe. It will trigger the use of the most energy efficient products and solutions (e.g. heat recovery in ventilation, inverter technologies, etc.) and promote holistic building concepts (e.g. Building Management Systems and maintenance contracts). The current approach, with differing calculation bases in different countries, is counter-productive as it leads to a fragmentation of the market, delays innovation and makes enforcement efforts less transparent and comparable. Additionally, a more holistic approach would improve the energy efficiency by optimal management strategies of the various systems present in buildings and would help to counteract the unavoidable ageing effects on products and systems by regular maintenance and servicing.

EPEE recommendations:

- Promote the reference to the standardized calculation methodology from Annex I to Article 3 of the EPBD, to ensure that the right level of attention is given to this important topic (amendments 3 & 7 in Annex I)
- Introduce the valorisation of Technical Building System in Annex I (amendments 7, 8, and 9 in Annex I)

2. Make the most of products in buildings: Improve the efficiency of Technical Building Systems

Setting minimum energy efficiency requirements on products is the most obvious solution to increase the energy efficiency of heating and cooling. However, even the most energy efficient products in buildings will not lead to energy savings if they are not properly sized, installed, controlled and maintained. Indeed, most technical building systems are dimensioned for peak situations and full load conditions. However, these conditions do not occur very often. In reality, technical building systems usually operate under so-called part-load conditions which do have a big improvement potential. The European Commission does not take into account these important factors in its proposal on Technical Building Systems in Article 8 (EPBD) and by keeping building automation and control system requirements optional in Articles 14 and 15 (EPBD) rather than making them mandatory.

Optimising Technical Building Systems offers great potential to trigger energy savings of over 30% with very low pay-back periods and no lock-in effects whilst strongly contributing to the decarbonisation of European buildings (2 – 32 Mtoe / year)\(^1\).

EPEE recommendations:

\(^1\) Cardonnel Ingénierie Study (more information in Annex 2)
Ensure that full load and part load conditions are taken into account when assessing the energy performance of technical building systems (amendments 1 & 4 in Annex I);
Include mandatory requirements to install active building automation and control systems for large non-residential buildings with total primary energy use of over 250 MWh per year, (amendments 5 & 6 in Annex I).
Include mandatory requirements to install continuous electronic monitoring and effective control functionalities for residential buildings with centralised technical building systems of a cumulated effective rated output of over 100 kW (suggested amendments 5 & 6 in Annex I)
Have mandatory regular inspections for all buildings with a technical building system of an effective rated output of over 70kW (amendments 5 & 6 in Annex I)
Ensure that inspections for buildings with smaller equipment are done at regular intervals (every two years) and that inspections also cover ventilation (amendment 5 & 6 in Annex I)

3. Promote technological innovation: Support the new Primary Energy Factor (PEF)

EPEE is a strong supporter of both the “energy efficiency first” principle and the transition of the energy market towards the use of renewable energies. We believe that ultimately, the European energy system needs to be fully based on renewable energies to achieve the EU’s climate and energy goals but clearly this transition needs to go hand in hand with reducing the energy demand and transport and distribution losses if we want to be successful. To boost innovation in that sense, enabling the comparison of different technologies is crucial. The Primary Energy Factor (PEF, EED, Annex IV) offers a major opportunity to strengthen such comparison.

EPEE recommendation:
- Support of the European Commission’s proposal of a PEF of 2.0 as it strikes the right balance between promoting renewable energies, and the “energy efficiency first” principle and provides a solid and coherent bond between the Energy Efficiency Directive, the Ecodesign and Energy labelling framework and the Directive on renewable energy sources (RED).

Conclusion

EPBD, EED and RED are closely interlinked and it is important to make best use of their synergies. We welcome the fact that this seems to be the case today and encourage decision makers to continue in this vein, taking into account our proposed recommendations.

However, the importance of standards is often under-estimated although they are key to ensure full implementation and enforcement – in particular with regards to the complexity of the EPBD. A national approach on standardization, as is currently applied does not reflect the economic context in Europe and could, in the worst case, completely undermine the objectives of the Directives. We therefore call on decision makers to fully recognise, promote and apply the now finalised set of CEN EPBD standards across the EU Member States to make the revision of the EPBD a true success.

As EPEE, we firmly believe in the great potential of Europe’s energy framework. By focussing on the right aspects, it will lay the necessary groundwork to lift buildings up one level to become more than just buildings but rather the “energy hubs” of the future, which will play an essential role in view of Europe’s long term decarbonisation targets including, for example, the broad scale introduction of electrified cars and much more.
ANNEX 1 – Suggested amendments to the EPBD proposal

<table>
<thead>
<tr>
<th>N°</th>
<th>Commission proposal</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Article 2, new point 17a and 17b (between points 17 and 18): 17.a. ‘full load’ means the maximum design demand of technical building systems for space heating, space cooling, ventilation and domestic hot water 17.b. ‘part load’ means a fraction of full load.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Article 2, new point 19.b (after point 19): 19.b. ‘building automation and control system’ means a system comprising all products, software and engineering services for automatic controls (including interlocks), monitoring, optimization, for operation, human intervention, and management to achieve energy-efficient, economical, and safe operation of technical building services.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Article 3.1, new subparagraph (originally from Annex 1 Point 1, to be included at the end of paragraph 1): Member States shall describe their national calculation methodology following the national annex framework of related European standards developed under mandate M/480 given by the European Commission to the European Committee for Standardisation (CEN). The national calculation methodology shall valorise the technical building systems based on a technical, environmental and economic feasibility assessment during the building design, development and maintenance phase.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Article 8, paragraph 5: 5. Member States shall ensure that, when a technical building system is installed, replaced or upgraded, the overall energy performance of the complete altered system is assessed, documented and passed on to the building owner, so that it remains available for the verification of compliance with the minimum requirements set pursuant to paragraph 1 and the issue of energy performance certificates. Member States shall ensure that this</td>
<td></td>
</tr>
</tbody>
</table>

5. Member States shall ensure that, when a technical building system is installed, replaced or upgraded, the overall energy performance of the complete altered system is assessed, at full and part load conditions, documented and passed on to the building owner, so that the resulting information # remains available for the verification of compliance with the minimum requirements set pursuant to
information is included in the national energy performance certificate database referred to in Article 18(3).

<table>
<thead>
<tr>
<th>5</th>
<th>Article 14:</th>
</tr>
</thead>
</table>
| (a) paragraph 1 is replaced by the following:
1. Member States shall lay down the necessary measures to establish a regular inspection of the accessible parts of systems used for heating buildings, such as the heat generator, control system and circulation pump(s) for non-residential buildings with total primary energy use of over 250 MWh and for residential buildings with a centralised technical building system of a cumulated effective rated output of over 100 kW. That inspection shall include an assessment of the boiler efficiency and the boiler sizing compared with the heating requirements of the building. The assessment of the boiler sizing does not have to be repeated as long as no changes were made to the heating system or as regards the heating requirements of the building in the meantime.

(b) paragraphs 2, 3, 4 and 5 are deleted and replaced by the following:
‘2. As an alternative to paragraph 1 Member States may set requirements to ensure that non-residential buildings with total primary energy use of over 250 MWh per year are equipped with building automation and

| Article 14: |
| (a) paragraph 1 is replaced by the following:
‘1. Member States shall lay down the necessary measures to establish a regular inspection of the accessible parts of systems used for heating buildings, such as the heat generator, control and ventilation systems, and circulation pump(s) for non-residential buildings with total primary energy use of over 250 MWh and for residential buildings with a centralised technical building system of an effective rated output of over 100 kW at least. That inspection shall include an assessment of the boiler heat generator efficiency and the boiler equipment sizing compared with the heating requirements of the building, of the effectiveness of control of individual room temperature, and of the balancing of energy distribution in the heating system including at full and part load conditions. The assessment of the boiler heat generator sizing does not have to be repeated as long as no changes were made to the heating system or as regards the heating requirements of the building in the meantime.’;
The inspection should be followed by servicing and maintenance of the accessible parts of systems used for heating buildings, if assessed by the inspection as being needed.
(b) paragraphs 2, 3, 4 and 5 are deleted and replaced by the following:
‘2. As an alternative to paragraph 1 Member States may set shall lay down the necessary requirements to ensure that non-residential buildings with total primary energy use of over 250 MWh per
control systems. These systems shall be capable of:
- continuously monitoring, analysing and adjusting energy usage;
- benchmarking the building’s energy efficiency, detecting losses in efficiency of technical building systems, and informing the person responsible for the facilities or technical building management about opportunities for energy efficiency improvement;
- allowing communication with connected technical building systems and other appliances inside the building, and being interoperable with technical building systems across different types of proprietary technologies, devices and manufacturers.

3. As an alternative to paragraph 1 Member States may set requirements to ensure that residential buildings with centralised technical building systems of a cumulated effective rated output of over 100 kW are equipped:
- with continuous electronic monitoring that measures systems' efficiency and inform building owners or managers when it has fallen significantly and when system servicing is necessary, and
- with effective control functionalities to ensure optimum generation, distribution and use of energy.'; and

- including individual room temperature control and dynamic hydraulic balancing functionalities.

(c) paragraph 3.b. (originally Article 14.3 in the current Directive 2010/31/EU) is added:

3.b. The accessible parts of systems used for heating buildings, such as the heat generator, control and ventilation systems, and circulation pump(s) for non-residential buildings with total primary energy use of over 250MWh and for residential buildings
Article 15:

(a) paragraph 1 is replaced by the following:

1. Member States shall lay down the necessary measures to establish a regular inspection of the accessible parts of air-conditioning systems for nonresidential buildings with total primary energy use of over 250 MWh and for residential buildings with a centralised technical building system of a cumulated effective rated output of over 100 kW. The inspection shall include an assessment of the air-conditioning efficiency and the sizing compared to the cooling requirements of the building. The assessment of the sizing does not have to be repeated as long as no changes were made to this air-conditioning system or as regards the cooling requirements of the building in the meantime.

(b) paragraphs 2, 3, 4 and 5 are deleted and replaced by the following:

2. As an alternative to paragraph 1 Member States may set requirements to ensure that nonresidential buildings with total primary energy use of over 250 MWh per year are equipped with building automation and control systems. These systems shall be capable of: (a) continuously monitoring, analysing and adjusting energy usage; (b) benchmarking the building’s energy efficiency, detecting losses in efficiency of technical building systems, and informing the person responsible for the facilities or technical building management with a centralised technical building system of a cumulated effective rated output of over 100 kW shall be inspected at least every two years.
about opportunities for energy efficiency improvement; EN 19 EN (c) allowing communication with connected technical building systems and other appliances inside the building, and being interoperable with technical building systems across different types of proprietary technologies, devices and manufacturers.

3. As an alternative to paragraph 1 Member States may set requirements to ensure that residential buildings with centralised technical building systems of a cumulated effective rated output of over 100 kW (a) with continuous electronic monitoring that measures systems' efficiency and inform building owners or managers when it has fallen significantly and when system servicing is necessary, and (b) with effective control functionalities to ensure optimum generation, distribution and use of energy.

(c) paragraph 3.b. is added:
1.b. The accessible parts of air-conditioning systems for non-residential buildings with total primary energy use of over 250MWh and for residential buildings with a centralised technical building system of a cumulated effective rated output of over 100 kW shall be inspected at least every two years.

7 Annex I, point 1:
1. The energy performance of a building shall reflect its typical energy use for heating, cooling, domestic hot water, ventilation and lighting.

The energy performance of a building shall be expressed by a numeric indicator of primary energy use in kWh/(m².y), harmonised for the purpose of both energy performance certification and compliance with minimum energy performance requirements. The energy performance and the methodology applied for building management about opportunities for energy efficiency improvement; EN 19 EN (c) allowing communication with connected technical building systems and other appliances inside the building, and being interoperable with technical building systems across different types of proprietary technologies, devices and manufacturers.

Annex I, point 1:
1. The energy performance of a building shall reflect its typical energy use for technical building systems heating, cooling, domestic hot water, ventilation and lighting.

The energy performance of a building shall be expressed by a numeric indicator of primary energy use in kWh/(m².y), harmonised for the purpose of both energy performance certification and compliance with minimum energy performance requirements. The energy performance and
its determination shall be transparent and open to innovation.

Member States shall describe their national calculation methodology following the national annex framework of related European standards developed under mandate M/480 given by the European Commission to the European Committee for Standardisation (CEN).

Member States shall describe their national calculation methodology following the national annex framework of related European standards developed under mandate M/480 given by the European Commission to the European Committee for Standardisation (CEN).

8 **Annex I, point 2**

2. The energy needs for space heating, space cooling, domestic hot water and adequate ventilation shall be calculated in order to ensure minimum health and comfort levels defined by Member States.

The calculation of primary energy shall be based on primary energy factors per energy carrier, which may be based on national or regional annual weighted averages or on more specific information made available for individual district system.

Primary energy factors shall discount the share of renewable energy in energy carriers so that calculations equally treat: (a) the energy from renewable source that is generated on-site (behind the individual meter, i.e. not accounted as supplied), and (b) the energy from renewable energy sources supplied through the energy carrier.

9 **Annex I, point 3**

3. The methodology shall be laid down taking into consideration at least the following aspects: (a) the following actual thermal characteristics of the building including its internal partitions: (i) thermal capacity; (ii) insulation; (iii) passive heating; (iv) cooling elements; and (v) thermal bridges; (b) heating installation and hot water supply, including their insulation characteristics; (c) air-conditioning installations; (d) natural and mechanical ventilation which may include air-tightness;
(e) built-in lighting installation (mainly in the non-residential sector);
(f) the design, positioning and orientation of the building, including outdoor climate;
(g) passive solar systems and solar protection;
(h) indoor climatic conditions, including the designed indoor climate;
(i) internal loads.

(d) natural and mechanical ventilation which may include air-tightness;
(e) built-in lighting installation (mainly in the non-residential sector);
(f) the design, positioning and orientation of the building, including outdoor climate;
(g) passive solar systems and solar protection;
(h) indoor climatic conditions, including the designed indoor climate;
(i) internal loads.
(j) building automation and control (residential and non-residential)
ANNEX 2 – Case studies showing the importance of optimizing the energy performance of Technical Building Systems

It is essential that legislation takes a holistic view when approaching buildings systems by optimizing the energy performance of Technical Building Systems. Key to optimized Technical Building systems is to ensure effective building automation and control. This does not require invasive renovation measures, pays back quickly and has no lock-in effects. However, despite these obvious benefits, the great potential of optimizing energy performance of Technical Building Systems has not been exploited yet.

Case study 1: A study carried out by Cardonnel Ingénierie highlights the significant negative impact of a lack of proper maintenance and control of thermal equipment on energy consumption, cost and CO2 emissions. In the example given, the energy consumption of a conventional space heater increases by 10% after 5 years and by 35% after 10 years due to a lack of maintenance and control. This has a direct impact on CO2 emissions which increase accordingly and on the payback time, which nearly doubles due to the increased energy consumption. In addition, the study demonstrates that replacing thermal heating and cooling equipment can result in energy savings of 25 to 40% combined with payback times of 5 to 10 years depending on the type of the building. Upgrading the envelope of the same buildings, however, requires payback times of 24 to 28 years, achieving energy savings from 40% to 50%.

Case study 2: A study carried out by Kirsten Gram-Hanssen study on efficient technologies shows that energy certification and passive efficiency technologies like insulation are not sufficient to ensure expected energy efficiency due to the rebound effect in the human user behaviour. Heating consumption in similar buildings can vary with a factor 3 dependent on behaviour. This is a major parameter to observe and the first step to enable energy friendly behaviour is to ensure metering of system performance and then mitigate deviations by active TBS controls.

Case study 3: A study conducted by DG Energy on energy saving potentials in the industry sector highlights the importance of an integrated control system and demonstrates that building controls are key to reduce energy consumption in existing commercial and industry facilities. According to this study, an Integrated Control System is classified as “projected sector energy saving opportunities with highest technical potential” (with <2 year simple payback), along with other measures.

Case study 4: A study conducted by Waide Strategic Efficiency shows that incremental investments are nine times less than the value of the resulting savings in energy bills. Proper application of building automated technology and controls has the theoretical potential to save about 22% of building energy consumption by 2021.

These findings highlight the importance of ensuring that measures to improve the energy performance of buildings should not focus on the building envelope only, but should include all elements and technical systems in a building.

Controls enable building owners to continuously monitor the performance of their buildings and make corrections when problems arise. They enable owners/tenants to modify the performance of systems immediately to respond dynamically to loads in a building and be proactive about saving energy efficiency. Buildings without controls are set to be optimized for a set design condition that is most likely not representative of operation for most of the year.

Physical inspections and building automation and controls must work together, not in alternance. Our concern is that inspections alone, even recommissioning of buildings, rarely
result in long-term changes. With remote monitoring the owner/tenant gets immediate indicators that something is wrong, not just once a year opportunities to identify and correct issues.